

Consumption of an Oil Composed of Medium Chain Triacylglycerols, Phytosterols, and N-3 Fatty Acids Improves Cardiovascular Risk Profile in Overweight Women

Christine Bourque, Marie-Pierre St-Onge, Andrea A. Papamandjaris, Jeffrey S. Cohn, and Peter J.H. Jones

Medium chain triacylglycerols (MCT) have been suggested as efficacious in weight management because they possess greater thermogenic qualities relative to long chain triacylglycerols; however, MCT may also increase circulating lipid concentrations, possibly increasing risk of cardiovascular disease (CVD). The present objective was to examine the effect of a diet supplemented with a functional oil (FctO) composed of energy expenditure-enhancing MCT (50% of fat), cholesterol-lowering phytosterols (22 mg/kg body weight), and triacylglycerol-suppressing n-3 fatty acids (5% of fat), versus a beef tallow-based diet (BT), on plasma lipid and aminothiol concentrations. In a randomized, single-blind, crossover design, partially-inpatient trial, 17 overweight women consumed each oil as part of a controlled, supervised, targeted energy balance diet for 27 days, with 4 or 8 weeks of washout between phases. Mean plasma total cholesterol concentration was lower ($P < .0001$), by 9.1%, on FctO (4.37 ± 0.20 mmol/L) versus BT (4.80 ± 0.20 mmol/L). Mean plasma low-density lipoprotein (LDL) cholesterol was also lower ($P < .0001$) following FctO (2.39 ± 0.15 mmol/L) versus BT (2.86 ± 0.16 mmol/L), representing a 16.0% difference between diets. High-density lipoprotein (HDL) cholesterol and circulating triacylglycerol concentrations remained unaffected by treatment. Ratios of HDL:LDL and HDL:total cholesterol were higher ($P < .01$) by 22.0% and 11.0%, respectively, on FctO versus BT. Plasma total homocysteine remained unchanged with FctO, but decreased ($P < .05$) with control, hence higher ($P < .05$) end points were observed with FctO (6.95 ± 0.33 μ mol/L) versus BT (6.27 ± 0.28 μ mol/L). Plasma glutathione increased ($P < .05$) by 0.44 μ mol/L with FctO supplementation. In conclusion, despite equivocal effects on homocysteine levels, consumption of a functional oil composed of MCT, phytosterols, and n-3 fatty acids for 27 days improves the overall cardiovascular risk profile of overweight women.

© 2003 Elsevier Inc. All rights reserved.

OBESITY IS AN independent risk factor for cardiovascular disease (CVD), the most common cause of mortality and morbidity in North America.^{1,2} Substitution of medium chain triacylglycerols (MCT), containing fatty acids with 6 to 12 carbon chains, for conventional dietary fats has been suggested as beneficial to weight management, because MCT increase energy expenditure and fat oxidation relative to long chain triacylglycerols (LCT).³⁻⁶ Medium chain triacylglycerols are rapidly absorbed through the portal circulation⁷ and undergo oxidation to carbon dioxide^{8,9} or conversion to long chain fatty acids in the liver,¹⁰ thus avoiding deposition in peripheral tissues. Animal studies have indeed shown substantial weight loss following MCT consumption,¹¹⁻¹³ and this has been shown in a supplementation trial,¹⁴ but not in controlled feeding situations in humans.¹⁵

Possible benefits of MCT consumption on energy balance may be offset by undesirable effects on circulating cholesterol and triacylglycerol (TAG) concentrations, both of which are important risk factors for CVD. Long-term feeding of caprylic (8:0) and capric (10:0) acids has resulted in plasma cholesterol concentrations higher than those of polyunsaturated fatty acids (PUFA),¹⁶⁻¹⁸ lower than those of lauric acid,¹⁷ and intermediate between those of myristic and oleic acids.¹⁹ Conversely, some investigators have reported 8:0 and 10:0 to be similarly cholesterol-raising as palm oil^{16,20} and butter.²⁰ With respect to effects on TAG, short-term MCT supplementation has demonstrated a 3-fold increase following overfeeding²¹ and a 42% increase following weight-maintenance feeding²² in comparison to soybean oil. However, long-term MCT feeding has resulted in unchanged fasting TAG as compared with LCT feeding.¹⁶⁻²⁰

Phytosterols have been shown to block the absorption of dietary and endogenously-derived cholesterol from the gut, while being only minimally absorbed themselves.²³ Daily consumption of moderate quantities of phytosterols has been

shown to consistently reduce plasma total cholesterol by 5% to 13% and low-density lipoprotein (LDL) cholesterol by 7% to 16%, in both hyper-²⁴⁻²⁷ and normocholesterolemic²⁷⁻²⁹ individuals, without affecting high-density lipoprotein (HDL) cholesterol or TAG concentrations.

Alpha-linolenic acid (ALA), an n-3 fatty acid found in flaxseed oil, has been shown to undergo conversion³⁰⁻³² to the potent hypotriacylglycerolemic³³ eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in tissue *in vivo* and may thus have anti-atherogenic properties, making it a healthy addition to a blended oil product.

We hypothesized that consumption of MCT along with cholesterol-lowering phytosterols and TAG-suppressing n-3 PUFA would prevent undesirable increases in blood lipid concentrations, thus allowing MCT use in prevention of weight gain. The objective of the study was to evaluate the effect of this functional oil (FctO) versus beef tallow as a control fat on circulating lipids, as well as fatty acid metabolism. Because there is some discrepancy in the literature regarding the effects of fish oil on homocysteine (Hcy),^{34,35} a secondary objective was to

From the School of Dietetics and Human Nutrition, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada; and the Hyperlipidemia and Atherosclerosis Research Laboratory, Clinical Research Institute of Montreal, Montreal, Quebec, Canada.

Submitted August 31, 2002; accepted January 30, 2003.

Supported by Dairy Farmers of Canada and Forbes Medi-Tech.

Address reprint requests to Peter J.H. Jones, PhD, School of Dietetics and Human Nutrition, 21,111 Lakeshore Rd, Ste-Anne-de-Bellevue, Quebec, Canada, H9X 3V9.

© 2003 Elsevier Inc. All rights reserved.

0026-0495/03/5206-0018\$30.00/0

doi:10.1016/S0026-0495(03)00070-1

measure plasma total Hcy and other aminothiols following dietary fat modification.

SUBJECTS AND METHODS

Subjects

Twenty-two healthy, overweight women were recruited from the surrounding community through newspaper advertising. Enrolled subjects had body mass index (BMI) $> 25 \text{ kg/m}^2$, plasma total cholesterol concentration $< 7.0 \text{ mmol/L}$, and total circulating TAG concentration $\leq 3.0 \text{ mmol/L}$ at screening. Subject body weights were required to have been stable ($\pm 5\%$) for at least 3 months before study entrance. All subjects reported absence of existing chronic illnesses including diabetes, hypertension, cardiac, hepatic, renal, and gastrointestinal dysfunction. Other exclusion criteria included use of lipid-lowering drugs, beta-blockers or diuretics, and personal history of CVD. Those reporting exercise at a frequency of ≥ 5 times per week or ongoing pregnancy or lactation were excluded. Before study onset, subjects received a complete description of the protocol before signing a consent form in the presence of the study investigators. The experimental protocol was approved by the Human Ethical Review Committee of the Faculty of Agriculture and Environmental Sciences at McGill University.

Study Protocol

The study was a randomized, single-blind, controlled, partially-inpatient clinical trial. A crossover design was used, with two 27-day dietary feeding cycles separated by 8 weeks of washout (4 weeks for 1 subject), during which subjects resumed their habitual diets. Subjects were randomly allocated to receive 1 of 2 treatment sequences, with a balanced number of subjects assigned to each dietary treatment per phase. Subjects were partially inpatients at the Mary Emily Clinical Nutrition Research Unit (CNRU) of McGill University during both feeding periods. Participants were allowed to leave the facility between meals for work or other approved purposes, but were expected to remain at the unit after the evening meal and overnight. Meals were consumed under supervision at the CNRU, however, under unusual circumstances, study coordinators permitted meals to be packed and consumed outside of the CNRU; this occurred for $< 2\%$ of meals. Although physical activity was not encouraged, an exercise facility was available at the unit. Subjects were instructed to report any physical activities in a journal during the first phase of the study and to reproduce the same intensity and duration of activity on corresponding days of the second phase. A physician familiar with the study protocol and diets was available throughout the trial in case subjects experienced discomfort. Fasting blood samples were collected on day 1, 26, and 28 of each dietary phase. Measurements on days 26 and 28 were taken to obtain a better end point estimate of circulating lipid concentrations and to quantify the day-to-day variation in these variables. Because the same menu was assigned to corresponding days across phases, foods consumed preceding day 26 blood draws were identical, except for treatment fat, and similarly for day 28 blood draws. To measure fatty acid excretion, total fecal samples were collected for 3 days at midpoint of each phase, a period chosen to allow for sufficient adaptation to the experimental diets. Using the present protocol, each subject was tested during the same phase of her menstrual cycle for corresponding time points across study periods.

Diets

Experimental diets consisted of prepared North American solid foods, precisely weighed, and based on a 3-day rotating cycle menu. Diets were served as 3 isoenergetic meals per day and provided 45% of energy as carbohydrate, 15% as protein, and 40% as fat, of which 75% was delivered as treatment fat. The remaining 25% of total fat was found in the basal diet food items identical to both diets. Treatment fat,

Table 1. Fatty Acid Composition of Experimental Diets

	Percent of Total Fatty Acids	
	Control Diet	Functional Oil Diet
8:0	Trace	19.4 \pm 2.0
10:0	0.2 \pm 0.1	23.6 \pm 2.3
12:0	0.3 \pm 0.1	3.9 \pm 0.6
14:0	3.4 \pm 0.4	2.6 \pm 0.5
16:0	26.1 \pm 0.9	10.1 \pm 1.1
18:0	20.3 \pm 1.1	3.8 \pm 0.6
18:1n-9	38.5 \pm 1.6	23.6 \pm 3.5
18:2n-6	6.4 \pm 1.6	7.1 \pm 1.6
18:3n-3	0.8 \pm 0.1	4.6 \pm 1.3
Σ SFA	50.9 \pm 0.5	63.8 \pm 1.0
Σ MUFA	41.9 \pm 0.4	24.4 \pm 0.8
P:S ratio	0.14 \pm 0.01	0.19 \pm 0.01
n-6:n-3 ratio	7.2 \pm 0.3	1.5 \pm 0.1

NOTE. Mean \pm SEM composition of 9 meals from the 3-day menu, analyzed in duplicates, thus representing 18 measurements for each diet.

Abbreviations: SFA, saturated fatty acids; MUFA, mono-unsaturated fatty acids; P:S, polyunsaturated to saturated ratio.

either FctO or beef tallow (BT), was directly incorporated into food items during meal preparation and cooking to effect blinding. The FctO consisted of 3 major lipid components: MCT, phytosterols, and n-3 PUFA. A combination of MCT oil (50% of fat) (Neobee 1053; Stepan, Northfield, IL), butter (5% of fat), and coconut oil (5% of fat) comprised the MCT portion of the FctO. Tall oil phytosterols, with major components sitosterol, campesterol, and sitostanol, in the unesterified form (Forbes phytosterols; Forbes Medi-Tech, Vancouver, BC, Canada), were administered at a concentration of 22 mg/kg body weight per day (average daily intake = 1.81 g). Because plant sterols were dispersed in fat before being incorporated to foods, sufficient solubilization and intestinal availability were ensured. The n-3 PUFA portion of the oil was provided by flaxseed oil (5% of fat). Olive oil (10% of fat) was also present in the FctO to approach the proportion of monounsaturated fatty acids found in the BT diet. The intake of each fat component was equally distributed over the 3 daily meals. Treatment fat for the control diet was composed exclusively of beef tallow. Forty-seven percent of total fatty acids in the FctO diet had ≤ 12 carbons, while 66% of the fatty acids in the BT diet had ≥ 18 carbons (Table 1). Average daily cholesterol intakes on FctO and BT diets were 349 mg and 418 mg, respectively. Nonfat and nonsterol constituents were identical across diets.

To provide a targeted energy balance diet, the nutrient intake was adjusted to individual subject energy requirements using the Mifflin equation,³⁶ to which an activity factor of 1.7 was multiplied to compensate for additional energy needs of active adults.³⁷ The different energetic contribution of MCT and LCT, 34 and 38 kJ/g, respectively, were accounted for in the calculation of energy intake, hence FctO and BT diets were isoenergetic. During the first week of phase 1, energy intake was readjusted to re-establish energy balance. Energy intake was fixed thereafter and was identical during both dietary treatment phases. Body weight was monitored daily before breakfast during feeding periods. No extra food was allowed between meals, except for decaffeinated, energy-free carbonated beverages and herbal teas, which were obtained from kitchen staff. One black coffee was allowed per day at breakfast. Health Canada recommendations³⁸ were met for all vitamins, minerals, fiber, carbohydrate subcomponents, and essential fatty acids. The nutrient content of the diets, other than fatty acids, was determined with Food Processor (Esha Research, Salem, OR), a computerized dietary analysis program equipped with a Canadian database. A weight

maintenance protocol was chosen to specifically determine the effects of the treatment oil, not weight loss, on the different parameters measured.

Analyses

Blood lipid measurement. Blood samples were drawn after a 12-hour overnight fast and at least 24 hours of alcohol abstinence (for day 1) and collected in EDTA-containing Vacutainer (BD, Franklin Lakes, NJ) tubes. Samples were immediately centrifuged at room temperature using a table top centrifuge for 15 minutes at $250 \times g$, and resulting plasma and red blood cell (RBC) subfractions were separated and stored at -80°C until analysis. Plasma total and HDL cholesterol and TAG concentrations were analyzed in quadruplicate with standardized reagents using a VP Autoanalyser (Abbott Laboratories, North Chicago, IL) calibrated as per the standardization protocol of the Canadian Reference Laboratory (1996, Vancouver, BC, Canada). Certification for traceability using this method was maintained through the National Reference System. Measurement of HDL cholesterol in plasma was performed after precipitation of apolipoprotein B with dextran sulphate and magnesium chloride.³⁹ LDL cholesterol concentrations were calculated using the Friedewald equation.⁴⁰ Coefficients of variation (CVs) for replicate analyses of total, HDL cholesterol, and TAG concentrations were 1.4%, 2.3%, and 3.1%, respectively.

Homocysteine and other aminothiols measurements. Total Hcy, cysteine, cysteinylglycine, and glutathione were measured using a modified isocratic high-performance liquid chromatograph (HPLC) with fluorescence detection of derivatized aminothiols as previously described.⁴¹ Aminothiols were reduced and released from proteins by incubation with tri-n-butylphosphine (10%) in dimethylformamide for 30 minutes at 4°C . Proteins were then precipitated with 0.6 mol/L cold perchloric acid containing EDTA. Derivatization was performed with ammonium 7-fluorobenzo-2-oxa-1,3-diazole-4-sulphonate in sodium hydroxide and potassium borate at 60°C for 60 minutes. After cooling on ice, 10- μL samples were injected into a HPLC (System Gold; Beckman, Fullerton, CA) equipped with an analytical reverse phase column (C18ODS, 250 \times 4.6 mm, Beckman). Isocratic conditions were used with a 0.45:2 acetate:acetic acid buffer, pH 4.0, and a flow rate of 1.3 mL/min for 25 minutes. Fluorescence detection was performed with a 305-395 nm excitation filter and a 430-470 nm emission filter. Acetyl-cysteine was used as internal standard to allow quantification. The day-to-day CVs were 2.5%, 6.5%, 3.2%, and 6.6% for Hcy, cysteine, cysteinylglycine, and glutathione, respectively.

Fatty acid composition determination. Individual meals in each 3-day cycle diet, RBC on day 1 and day 28, and 3-day total fecal samples were analyzed in duplicate for fatty acid composition by gas-liquid chromatography after lipid extraction,⁴² sodium hydroxide saponification,⁴³ and boron-trifluoride methylation.⁴³ Before lipid extraction of RBC samples, 0.1% butylated hydroxytoluene (BHT) was added to minimize peroxidation of long chain PUFA. Total fecal samples collected for 3 days at midpoint of each phase. For fatty acid analyses, freeze dried fecal samples collected within a phase were pooled based on their relative contribution to total fecal mass. One milligram of the internal standard 17:0 was added to samples for quantification of fecal fatty acids.

Derivatized samples were injected via an autoinjector into a gas chromatograph (HP 5890 Series II; Hewlett Packard, Palo Alto, CA) equipped with a flame ionization detector and a 30 m capillary column, with 0.2 mm internal diameter and 0.25 μm film thickness (SP2330; Supelco, Bellefonte, PA). Identification was performed using relative retention times of authentic standards (Supelco). Fatty acid composition of each diet is reported in Table 1. CVs for replicate food total fatty acid recovery, fatty acid content of different meals, and menu cycle days were 12.3%, 6.6%, and 2.6%, respectively.

Statistical Methods

Data are reported as mean \pm SEM. Dietary fatty acid composition is presented descriptively, but was not analyzed statistically. Analysis of variance was performed using a mixed model procedure for repeated measures, with factors of phase, sequence, diet, time, time-by-phase interaction, and time-by-diet interaction. Age and initial body weight were also tested as covariates. Paired Student's *t* test was then applied to the model to compare time points within dietary phases. Scheffe's adjustment was performed to identify significant differences between BT and FctO diets at corresponding times. Separate comparisons between end points (mean of days 26 and 28) were also performed with the mixed model. Endpoint values in tables represent the mean of data obtained on days 26 and 28. Plasma and RBC lipid values for 1 subject were excluded from means on day 1 of the FctO phase, as improper fasting was suggested by TAG concentrations well above the subject's normal range. The level of significance for rejection of the null hypothesis was set at $P < .05$. Version 8.0 of SAS software (SAS Institute, Cary, NC) was used for all statistical analyses.

RESULTS

Twenty-two subjects enrolled and 17 subjects completed both phases of the trial. Women who completed the trial were 44 ± 4 years of age and had initial BMI of $32 \pm 1 \text{ kg/m}^2$. Mean fasting total cholesterol and TAG concentrations at screening were $5.12 \pm 0.17 \text{ mmol/L}$ and $1.57 \pm 0.14 \text{ mmol/L}$, respectively. Mean energy and fat intakes were $10.28 \pm 0.31 \text{ MJ/d}$ ($2,458 \pm 73 \text{ kcal/d}$), and $109.25 \pm 3.25 \text{ g/d}$. Four subjects were smokers, and 8 were postmenopausal. For 16 of the subjects who completed the protocol, the washout period was 8 weeks; for logistical reasons, the washout period lasted only 4 weeks for 1 subject.

The FctO diet was generally well tolerated, except for minor gastrointestinal discomfort and occasional nausea during the first few days of consumption. Some subjects reported that the BT diet had an unpleasant smell, taste, aftertaste and/or mouth-feel. The FctO diet was generally preferred by subjects and was not reported to have any particular smell, taste, or texture.

Baseline values of all variables were not statistically different between dietary phases. Mean body weight decreased ($P < .01$) during both FctO ($-0.87 \pm 0.16 \text{ kg}$) and BT ($-0.84 \pm 0.22 \text{ kg}$) phases, but no differential weight loss was discerned between dietary cycles.

Mean plasma lipid concentration at baseline and endpoint of each feeding period and percent change over time are presented in Table 2. Mean plasma total cholesterol concentration at end point was lower ($P < .0001$) on the FctO versus BT diet ($4.37 \pm 0.20 \text{ mmol/L}$ v $4.80 \pm 0.20 \text{ mmol/L}$), corresponding to a 9.1% difference between diets. Relative to baseline, mean total cholesterol concentration declined by 0.24 mmol/L on day 26 of the FctO diet, while there was no change on the BT diet. The mean decrease in total cholesterol after 27 days of FctO consumption was 4.8%.

Mean plasma LDL cholesterol concentration at endpoint was lower ($P < .0001$), by 16.0%, with FctO ($2.39 \pm 0.15 \text{ mmol/L}$) compared with BT ($2.86 \pm 0.16 \text{ mmol/L}$) consumption (Fig 1). Relative to baseline, LDL cholesterol concentrations decreased by 0.25 mmol/L on day 26 and 0.28 mmol/L on day 28 of the FctO diet, while no significant change was observed on the control diet. A mean 10.4% decline in LDL cholesterol was found on the FctO phase.

Table 2. Effect of Experimental Diets on Plasma Lipid Concentrations

Plasma Lipid Parameter	Control Diet	Functional Oil Diet
Total cholesterol* (mmol/L)		
Baseline	4.77 ± 0.17	4.58 ± 0.21
Endpoint	4.80 ± 0.20	4.37 ± 0.20†‡
Change (%)	0.6	-4.6§
LDL cholesterol* (mmol/L)		
Baseline	2.76 ± 0.12	2.66 ± 0.15
Endpoint	2.86 ± 0.16	2.39 ± 0.15†‡
Change (%)	3.6	-10.2‡
HDL cholesterol (mmol/L)		
Baseline	1.33 ± 0.07	1.30 ± 0.08
Endpoint	1.32 ± 0.07	1.32 ± 0.08
Change (%)	-0.8	1.5
HDL:LDL cholesterol ratio		
Baseline	0.490 ± 0.029	0.495 ± 0.026
Endpoint	0.481 ± 0.031	0.576 ± 0.036†
Change (%)	-1.8	16.4
HDL:total cholesterol ratio¶		
Baseline	0.279 ± 0.012	0.281 ± 0.010
Endpoint	0.276 ± 0.010	0.304 ± 0.012†
Change (%)	-1.0	8.2
Total triacylglycerols (mmol/L)		
Baseline	1.48 ± 0.12	1.36 ± 0.15
Endpoint	1.37 ± 0.13#	1.42 ± 0.13
Change (%)	-7.4	4.4

NOTE. Mean ± SEM; n = 17 women for each period, except for baseline and percent change on the functional oil diet (n = 16).

*Significant main effect of diet, $P < .0001$.

†Significantly different from baseline within dietary phase, $P < .05$.

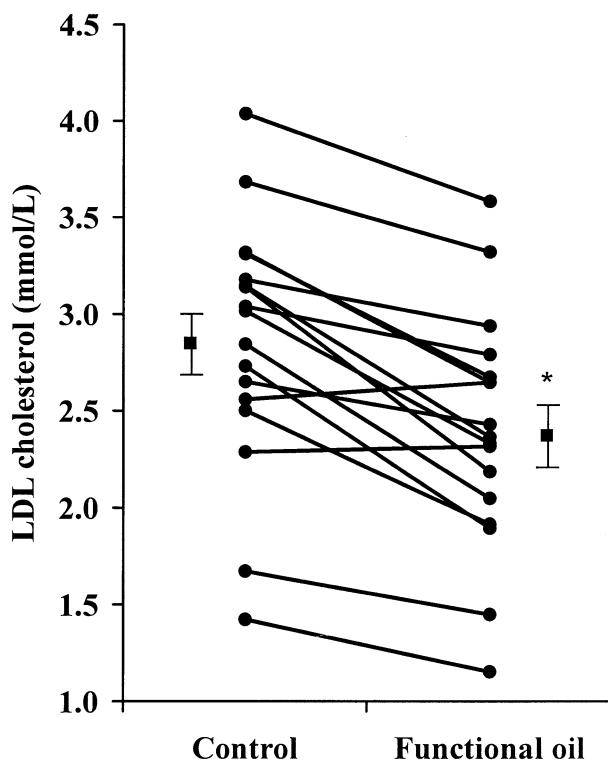
‡Significantly different from the control diet, $P < .05$.

§Trend toward significant difference from the control diet, $P < .1$.

|| $P < .01$.

¶ $P < .05$.

#Trend toward significant difference from baseline within dietary phase, $P < .1$.


HDL cholesterol concentrations remained unchanged during both feeding periods. End point HDL:LDL and HDL:total cholesterol ratios were higher ($P < .01$), by 22.0% and 11.0%, respectively, with FctO versus BT (0.574 ± 0.035 v 0.478 ± 0.029 for HDL:LDL cholesterol and 0.304 ± 0.12 v 0.276 ± 0.010 for HDL:total cholesterol) feeding. Although no significant difference between diets was identified from the analysis of separate day measurements, a main effect of diet was noted for both ratios. Relative to baseline, HDL:LDL and HDL:total cholesterol ratios increased by 19.5% and 9.4%, respectively, on the FctO diet.

Mean circulating plasma TAG concentrations were not different between diets. A marginally significant decrease from baseline was noted on day 26 of the BT diet. Percent changes in body weight and BMI were correlated with changes in TAG concentrations ($r = .554$, $P < .001$ for weight, and $r = .544$, $P < 0.01$ for BMI). Separate dietary correlation analysis showed that the association between changes in TAG and body weight was only present in the BT diet ($r = .705$, $P < .01$), but nonexistent in the FctO diet, and likewise for the association between TAG and BMI ($r = .697$, $P < .01$).

Plasma aminothiol concentrations at baseline and endpoint,

and percent change over time are presented in Table 3. Mean end point plasma total Hcy concentration was higher ($P < .0001$) on the FctO versus BT diet ($6.95 \pm 0.33 \mu\text{mol/L}$ v $6.27 \pm 0.28 \mu\text{mol/L}$), representing a mean 10.9% difference across diets. Relative to baseline, total Hcy concentration decreased on the BT diet by 5.4%, while a marginal increase was seen at endpoint of the FctO diet. Cysteine concentrations remained unchanged, although percent variations were marginally different between diets. Cysteinylglycine remained unchanged with BT, but decreased by $1.20 \mu\text{mol/L}$ at endpoint of FctO consumption. Glutathione increased from baseline at endpoint of the FctO diet by $0.41 \mu\text{mol/L}$ and did not vary with BT.

Relative fatty acid composition of RBCs on days 1 and 28 of each dietary phase are presented in Table 4. Fatty acids with chain lengths of 6, 8, 10, and 12 carbons were not detected in this tissue. Proportion of 14:0, 16:0, 18:3n-3, EPA (20:5n-3) and the sum of n-3 fatty acids was higher, and n-6:n-3 ratio was lower, on FctO compared with the BT diet. Beef tallow diet consumption decreased the proportion of 14:0, 16:0, 18:3n-3, and EPA and increased the proportion of 18:0, 20:4n-6, and 22:4n-6 in RBCs compared with baseline. The sum of n-6 fatty acids increased by 1.2%, while the n-6:n-3 ratio increased by 7.9% after 27 days of BT feeding. Functional oil diet consumption increased tissue 18:3n-3, EPA, and the sum of n-3 fatty acids and decreased 18:1n-9, the sum of monounsaturated fatty acids, and the ratio of n-6:n-3 fatty acids by 12.2%. DHA

Fig 1. Effect of the control diet and the FctO diet on mean and individual end point (average of days 26 to 28) plasma LDL cholesterol concentrations in overweight women subjects (n = 17); *FctO < control, $P < .0001$.

Table 3. Effect of Experimental Diets on Plasma Aminothiol Concentrations

Plasma Aminothiol and Study Day	Control Diet	Functional Oil Diet
Homocysteine* (μmol/L)		
Baseline	6.68 ± 0.33	6.55 ± 0.33
Endpoint	6.27 ± 0.29†	6.95 ± 0.34‡§
Change (%)	-6.1	6.1
Cysteine (μmol/L)		
Baseline	225 ± 7	217 ± 9
Endpoint	221 ± 7	228 ± 9
Change (%)	-1.7 ± 1.8	5.1
Cysteinylglycine (μmol/L)		
Baseline	24.9 ± 1.4	24.9 ± 1.3
Endpoint	24.2 ± 1.3	23.5 ± 0.9†
Change (%)	2.8	-5.6
Glutathione (μmol/L)		
Baseline	3.10 ± 0.32	2.93 ± 0.36
Endpoint	3.23 ± 0.27	3.34 ± 0.25
Change (%)	4.2	14

NOTE. Mean ± SEM; n = 17 women for each period, except for baseline and percent change on the functional oil diet (n = 16).

*Significant main effect of diet, $P < .0001$.

†Significantly different from baseline within dietary phase: $P < .05$.

‡Significantly different from the control diet, $P < .05$.

§Trend toward significant difference from baseline within dietary phase, $P < .1$.

|| $P < .01$.

¶Trend toward significant difference from the control diet, $P < .1$.

(22:6n-3), 22:5n-3, and the sum of saturated fatty acids remained unchanged on either diet. Changes in RBC fatty acids were not associated with those of plasma cholesterol or lipoproteins. There was a trend towards greater fecal FA excretion with FctO consumption compared with BT (0.47 ± 0.09 g/d v 0.61 ± 0.08 g/d, respectively, $P = .1$). Changes in plasma cholesterol were not correlated with fecal fatty acid excretion.

DISCUSSION

The present results demonstrate that consumption of a combination of MCT, phytosterols, and n-3 PUFA in a controlled diet for 27 days substantially lowers plasma total and LDL cholesterol concentrations, but does not affect circulating TAG or HDL cholesterol in healthy, overweight women. This research thus shows that dietary incorporation of MCT, in the context of weight maintenance, can also be advisable for CVD risk management. This FctO can therefore be of dual benefit. Although it is not possible from the present research to attribute each aspect of the lipid modulations to an individual component of the FctO, we have shown that, from a holistic approach, when combined with oils known for their health benefits, MCT can be consumed without adverse effects on CVD risk.

A rigorously controlled, partially-inpatient setting and cross-over design were used for this study. Subjects slept and resided exclusively at the CNRU and consumed precisely controlled diets under supervision, thereby assuring compliance to the dietary regimen. The results obtained were therefore due to the differences in treatment oils.

Beef tallow was selected as control fat to parallel the high degree of saturation of the FctO, while being free of MCT. Beef tallow consumption did not alter any plasma lipid parameters; thus being an appropriate control. However, BT was associated with poor palatability for some subjects and provided an average additional 69 mg/d of cholesterol to the control diet compared with the FctO diet. This is unlikely to have confounded plasma cholesterol concentrations because dietary cholesterol is now recognized to have a minor impact on circulating cholesterol values, as opposed to dietary fatty acid type or endogenous cholesterol.⁴⁴ Although the BT diet was less palatable for some subjects, this would not have affected the parameters under study, because subjects remained healthy and compliant with food intake. Comparison of the fatty acid profile of the BT diet with results from a recent nutritional survey

Table 4. Fatty Acid Composition of RBCs at Beginning and End of Experimental Diet Supplementation

Percent of total identified fatty acids	Control Diet		Functional Oil Diet	
	Day 1	Day 28	Day 1	Day 28
14:0 ²	0.34 ± 0.03	0.26 ± 0.02 ³	0.34 ± 0.03	0.38 ± 0.03 ⁴
16:0 ⁵	21.57 ± 0.37	19.93 ± 0.30 ⁶	21.15 ± 0.41	21.19 ± 0.44 ⁴
18:0	11.21 ± 0.40	12.41 ± 0.33 ³	11.13 ± 0.45	11.48 ± 0.43
18:1n-9	21.93 ± 0.40	21.68 ± 0.38	22.19 ± 0.62	21.05 ± 0.37 ³
18:2n-6	12.20 ± 0.54	11.87 ± 0.45	12.17 ± 0.62	11.46 ± 0.65
18:3n-3 ⁷	0.08 ± 0.01	0.05 ± 0.01 ³	0.08 ± 0.01	0.18 ± 0.02 ^{6,8}
20:4n-6 ⁹	16.75 ± 0.30	17.72 ± 0.32 ³	16.16 ± 0.41	16.60 ± 0.37
20:5n-3 ⁷	0.84 ± 0.04	0.66 ± 0.06 ¹⁰	0.80 ± 0.09	1.13 ± 0.08 ^{6,8}
22:4n-6 ²	3.51 ± 0.17	4.18 ± 0.24 ³	4.81 ± 0.45	4.64 ± 0.42
22:5n-3	3.84 ± 0.15	3.76 ± 0.19	3.72 ± 0.17	4.00 ± 0.19
22:6n-3	4.49 ± 0.20	4.47 ± 0.16	4.30 ± 0.27	4.56 ± 0.18
ΣSFA	33.11 ± 0.37	32.60 ± 0.47	32.62 ± 0.55	33.05 ± 0.67
ΣMUFA	22.81 ± 0.41	22.41 ± 0.41	22.94 ± 0.60	22.04 ± 0.40 ³

NOTE. Mean ± SEM; n = 17 women for each period, except for day 1 of the functional oil diet (n = 16).

^{2,7,9}Significant main effect of diet, ^{2,7} $P < .01$, ⁹ $P < .0001$, ⁹ $P < .05$.

⁵Trend toward significant main effect of diet, $P = .0576$.

^{3,6,10}Significantly different from day 1 within dietary phase, ³ $P < .05$, ⁶ $P < .0001$, ¹⁰ $P < .01$.

^{4,8}Significantly different from the control diet at corresponding time points, ⁴ $P < .01$, ⁸ $P < .001$.

show that when compared with recent data on the fat intake of Americans, our BT diet contained more saturated fat (50.9% v 33.3% for the typical American diet) and less polyunsaturated fat (7.2% v 20.5% for the typical American diet⁴⁵).

The extent of cholesterol lowering relative to control observed in the present trial, 9.1% and 16.0% for total and LDL cholesterol, respectively, correlates well with those seen in other plant sterol supplementation trials.²⁴⁻²⁹ When hypercholesterolemic subjects were fed tall oil phytosterols as part of a controlled diet for 30 days, total and LDL cholesterol were lower by 9.1% and 15.5% compared with placebo.²⁵ Therefore, it is appropriate to attribute all of the cholesterol lowering of the FctO diet to phytosterols. In fact, the degree of LDL cholesterol reduction relative to control with FctO consumption would produce a reduction of up to 31% in CVD risk, considering that each 1% decrease in LDL cholesterol concentrations corresponds to a 2% decrease in coronary heart disease risk.⁴⁶

A major concern with MCT feeding in an overweight population is the anticipated increase in plasma TAG concentrations. To offset this possible negative effect of MCT consumption, n-3 PUFA, obtained from flaxseed oil were added in the FctO, which provided approximately 5.0 g ALA. In contrast to marine sources of n-3 PUFA, flaxseed oil is tasteless, odorless, and does not require encapsulation for stability, thus, it can be acceptably incorporated to a great variety of foods. The lack of effect of FctO consumption on TAG concentrations may be due to a TAG-suppressing action of ALA, or alternatively, to a lack of TAG-raising effect of MCT. Unchanged plasma TAG concentrations have indeed been reported following MCT¹⁶⁻²⁰ and flaxseed oil supplementation.^{31,32,47,48} However, TAG were reduced at a high flaxseed oil intake of 60 mL per day for 2 weeks.⁴⁹ With background diets low in total and saturated fat, lower ALA intakes were needed to effect TAG lowering.⁵⁰ The 2-fold increase in tissue EPA on the FctO diet confirms the conversion of ALA to this long chain n-3 PUFA. Flaxseed oil feeding has been reported to increase EPA only,^{30,49,48} although

small changes in DHA have also been observed.³¹ Nevertheless, EPA and DHA should have similar TAG-suppressing abilities.⁵¹

Reduced dietary fat excretion, perhaps reflecting greater intestinal absorption, was observed on the FctO as compared with the BT diet. The easier and faster digestion and absorption of MCT versus LCT has been documented and is confirmed by MCT use in malabsorption disorders.⁵⁰ Improved absorption of MCT relative to LCT, combined with equal fat intake, may have compensated for the negative effect of MCT on energy balance, thus explaining the lack of differential weight loss between diets. Differences between MCT and LCT absorption should be corrected for in future energy balance studies.

A reduction in plasma total Hcy was anticipated, because the experimental diets were high in folate, vitamin B12, and vitamin B6 (respective mean daily intakes: 409 µg, 4.29 µg, and 2.67 mg). Therefore, the observed higher Hcy end points following FctO versus BT consumption were unexpected. Total Hcy concentrations remained within normal ranges in these subjects. Thus, this effect should be of little clinical significance, especially in comparison to the substantial improvement in CVD risk profile imparted by the reductions in circulating cholesterol.

In conclusion, consumption of MCT, when administered together with phytosterols and ALA, results in an overall positive influence on lipid profiles in healthy overweight women. This finding supports the concept of use of such a combination of dietary ingredients in the optimization of health risk reduction from the cardiovascular disease perspective.

ACKNOWLEDGMENT

The authors acknowledge the excellent work of the staff of the Mary Emily Clinical Nutrition Research Unit for help in meal preparation and the care of subjects. We thank all study participants for their time and compliance with the study protocol.

REFERENCES

1. Heart and Stroke Foundation, Health Statistics, Division of Statistics Canada and Health Canada: Heart disease and stroke in Canada. Ottawa, ON, Canada, 1997
2. US Department of Health and Human Services, National Institutes of Health, National Heart, Lung, and Blood Institute: Clinical guidelines on the identification, evaluation, and the treatment of overweight and obesity in adults: The evidence report. Bethesda, MD, NIH Publication No. 98-4083, 1998
3. Scalfi L, Coltori A, Contaldo F: Postprandial thermogenesis in lean and obese subjects after meals supplemented with medium-chain and long-chain triglycerides. *Am J Clin Nutr* 53:1130-1133, 1991
4. Hill JO, Peters JC, Yang D, et al: Thermogenesis in humans during overfeeding with medium-chain triglycerides. *Metabolism* 38:641-648, 1989
5. Dulloo AG, Fathi M, Mensi N, et al: Twenty-four-hour energy expenditure and urinary catecholamines of humans consuming low-to-moderate amounts of medium-chain triglycerides: A dose-response study in a human respiratory chamber. *Eur J Clin Nutr* 50:152-158, 1996
6. White MD, Papamandjaris AA, Jones PJH: Enhanced postprandial energy expenditure with medium-chain fatty acid feeding is attenuated after 14 d in premenopausal women. *Am J Clin Nutr* 69:883-889, 1999
7. Swift LL, Hill JO, Peters JC, et al: Medium-chain fatty acids: Evidence for incorporation into chylomicron triglycerides in humans. *Am J Clin Nutr* 52:834-836, 1990
8. Johnson RC, Young SK, Cotter R, et al: Medium-chain-triglyceride lipid emulsion: Metabolism and tissue distribution. *Am J Clin Nutr* 52:502-508, 1990
9. DeLany JP, Windhauser MM, Champagne CM, et al: Differential oxidation of individual dietary fatty acids in humans. *Am J Clin Nutr* 72:905-911, 2000
10. Carnielli VP, Sulkers EJ, Moretti KC, et al: Conversion of octanoic acid into long-chain saturated fatty acids in premature infants fed a formula containing medium-chain triglycerides. *Metabolism* 43:1287-1292, 1994
11. Lavau MM, Hashim SA: Effect of medium chain triglyceride on lipogenesis and body fat in the rat. *J Nutr* 108:613-620, 1978
12. Gelieber A, Torbay N, Bracco EB, et al: Overfeeding with medium-chain triglyceride diet results in diminished deposition of fat. *Am J Clin Nutr* 37:1-4, 1983
13. Simon E, Fernandez-Quintela A, Del Puy Portillo M, et al: Effects of medium-chain fatty acids on body composition and protein metabolism in overweight rats. *J Physiol Biochem* 56:337-346, 2000
14. Tsuji H, Kasai M, Takeuchi H, et al: Dietary medium-chain triacylglycerols suppress accumulation of body fat in a double-blind,

controlled trial in healthy men and women. *J Nutr* 131:2853-2859, 2001

15. St-Onge M-P, Bourque C, Jones PJH, et al: Medium- versus long-chain triglycerides for 27 days increases fat oxidation and energy expenditure without resulting in changes in body composition in overweight women. *Int J Obes* 27:95-102, 2003
16. Cater NB, Heller HJ, Denke MA: Comparison of the effects of medium-chain triacylglycerols, palm oil, and high oleic acid sunflower oil on plasma triacylglycerol fatty acids and lipid and lipoprotein concentrations in humans. *Am J Clin Nutr* 65:41-45, 1997
17. Tsai YH, Park S, Kovacic J, et al: Mechanisms mediating lipoprotein responses to diets with medium-chain triglyceride and lauric acid. *Lipids* 34:895-905, 1999
18. Asakura L, Lottenberg AMP, Neves MQTS, et al: Dietary medium-chain triacylglycerol prevents the postprandial rise of plasma triacylglycerols but induces hypercholesterolemia in primary hypertriglyceridemic subjects. *Am J Clin Nutr* 71:701-705, 2000
19. Temme EHM, Mensink RP, Hornstra G: Effects of medium chain fatty acids (MCFA), myristic acid, and oleic acid on serum lipoproteins in healthy subjects. *J Lipid Res* 38:1746-1754, 1997
20. Wardlaw GM, Snook JT, Park S, et al: Relative effects on serum lipids and apolipoproteins of a caprein-rich diet compared with diets rich in palm oil/palm-kernel or butter. *Am J Clin Nutr* 61:535-542, 1995
21. Hill JO, Peters JC, Swift LL, et al: Changes in blood lipids during six days of overfeeding with medium or long chain triglycerides. *J Lipid Res* 31:407-416, 1990
22. Swift LL, Hill JO, Peters JC, et al: Plasma lipids and lipoproteins during 6 d of maintenance feeding with long-chain, medium-chain, and mixed-chain triglycerides. *Am J Clin Nutr* 56:881-886, 1992
23. Jones PJ, MacDougall DE, Ntanios F, et al: Dietary phytosterols as cholesterol-lowering agents in humans. *Can J Physiol Pharmacol* 75:217-227, 1997
24. Miettinen TA, Puska P, Gylling H, et al: Reduction of serum cholesterol with sitostanol-ester margarine in a mildly hypercholesterolemic population. *N Engl J Med* 333:1308-1312, 1995
25. Jones PJH, Ntanios FY, Raeini-Sarjaz M, et al: Cholesterol-lowering efficacy of a sitostanol-containing phytosterol mixture with a prudent diet in hyperlipidemic men. *Am J Clin Nutr* 69:1144-1150, 1999
26. Jones PJ, Raeini-Sarjaz M, Ntanios FY, et al: Modulation of plasma lipid levels and cholesterol kinetics by phytosterol versus phytostanol esters. *J Lipid Res* 41:697-705, 2000
27. Hendriks HFJ, Weststrate JA, van Vliet T, et al: Spreads enriched with three different levels of vegetable oil sterols and the degree of cholesterol lowering in normocholesterolaemic and mildly hypercholesterolaemic subjects. *Eur J Clin Nutr* 53:319-327, 1999
28. Pelletier X, Belbraouet S, Mirabel D, et al: A diet moderately enriched in phytosterols lowers plasma cholesterol concentrations in normocholesterolemic humans. *Ann Nutr Metab* 39:291-295, 1995
29. Tammi A, Ronnemaa T, Gylling H, et al: Plant stanol ester margarine lowers serum total and low-density lipoprotein cholesterol concentrations of healthy children: The STRIP project. *J Pediatr* 136:503-510, 2000
30. Mantzioris E, James MJ, Gibson RA, et al: Dietary substitution with an alpha-linolenic acid-rich vegetable oil increases eicosapentaenoic acid concentrations in tissues. *Am J Clin Nutr* 59:1304-1309, 1994
31. Layne KS, Goh YK, Jumpsen JA, et al: Normal subjects consuming physiological levels of 18: 3(n-3) and 20:5(n-3) from flaxseed or fish oils have characteristic differences in plasma lipid and lipoprotein fatty acid levels. *J Nutr* 126:2130-2140, 1996
32. Cunnane SC, Ganguli S, Menard C, et al: High alpha-linolenic acid flaxseed (*Linum usitatissimum*): Some nutritional properties in humans. *B J Nutr* 69:443-453, 1993
33. Harris WS: n-3 Fatty acids and serum lipoproteins: Human studies. *Am J Clin Nutr* 65:1645S-1654S, 1997
34. Olszewski AJ, McCully KS: Fish oil decreases serum homocysteine in hyperlipemic men. *Coron Artery Dis* 4:53-60, 1993
35. Grundt H, Nilsen DW, Hetland O, et al: Atherothrombogenic risk modulation by n-3 fatty acids was not associated with changes in homocysteine in subjects with combined hyperlipidaemia. *Thromb Haemost* 81:561-565, 1999
36. Mifflin MD, St Jeor ST, Hill LA, et al: A new predictive equation for resting energy expenditure in healthy individuals. *Am J Clin Nutr* 51:241-247, 1990
37. Appendix A-11-e: Average daily energy requirement of adults whose occupational work is classified as light, moderate, or heavy, expressed as a multiple of basal metabolic rate, in Shils ME, Olson JA, Shike M, et al (eds): *Modern Nutrition in Health and Disease* (ed 9). Baltimore, MD, Williams & Wilkins, 1999
38. Health Canada: Recommended nutrient intakes for Canadians. Ottawa, Department of National Health and Welfare, 1990
39. Warnick GR, Benderson J, Albers JJ: Dextran sulfate-Mg²⁺ precipitation procedure for quantitation of high-density-lipoprotein cholesterol. *Clin Chem* 28:1379-1388, 1982
40. Friedewald WT, Levy RI, Fredrickson DS: Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. *Clin Chem* 18:499-502, 1972
41. Durand P, Fortin LJ, Lussier-Cacan S, et al: Hyperhomocysteinemia induced by folic acid deficiency and methionine load—applications of a modified HPLC method. *Clin Chim Acta* 252:83-93, 1996
42. Folch J, Lees M, Sloan S: A simple method for the isolation and purification of the total lipids from animal tissues. *J Biol Chem* 226:497-509, 1957
43. Al Makdessi S, Andrieu JL, Bacconin A, et al: Assay of lipids in dog myocardium using capillary gas chromatography and derivatization with boron trifluoride and methanol. *J Chromatogr* 339:25-34, 1985
44. Jones PJH, Papamandjaris AA: Lipids: Cellular metabolism. In: Bowman BA, Russell RM, eds. *Present Knowledge in Nutrition*. ed 8. Washington, DC, ILSI, 2001, pp 104-114
45. Popkin BM, Siega-Riz AM, Haines PS, et al: Where's the fat? Trends in U.S. diets 1965-1996. *Prev Med* 32:245-254, 2001
46. The Lipid Research Clinics Coronary Primary Prevention Trial results: II. The relationship of reduction incidence of coronary heart disease to cholesterol lowering. *JAMA* 251:365-374, 1984
47. Pang D, Allman-Farinelli MA, Wong T, et al: Replacement of linoleic acid with alpha-linolenic acid does not alter blood lipids in normolipidaemic men. *Br J Nutr* 80:163-167, 1998
48. Goh YK, Jumpsen JA, Clandinin MT: Effect of omega 3 fatty acid on plasma lipids, cholesterol and lipoprotein fatty acid content in NIDDM patients. *Diabetologia* 40:45-52, 1997
49. Singer P, Berger I, Wirth M, et al: Slow desaturation and elongation of linoleic and alpha-linolenic acids as a rationale of eicosapentaenoic acid-rich diet to lower blood pressure and serum lipids in normal, hypertensive and hyperlipemic subjects. *Prostaglandins Leukot Med* 24:173-193, 1986
50. Indu M, Ghafoorunissa: n-3 Fatty acids in Indian diets-comparison of the effects of precursor (alpha-linolenic acid) vs product (long chain n-3 polyunsaturated fatty acids). *Nutr Res* 12:569-582, 1992
51. Grimsgaard S, Bonaa KH, Hansen JB, et al: Highly purified eicosapentaenoic acid and docosahexaenoic acid in human have similar triacylglycerol-lowering effects but divergent effects on serum fatty acids. *Am J Clin Nutr* 66:649-659, 1997